MS (Data Science)

Program Info

This program equips students to transform data into actionable insights that enable one to make complex business decisions. Students will able to process large and complex data sets through computational, statistical, and machine learning techniques. This program will provide exposure to the latest trends and technologies in this field. Thus, producing the man power to fuel national and international emerging market of data science products.

Registration in “MS Thesis/Project– I” is allowed provided the student has:

Offered Campuses

Chiniot-Faisalabad Islamabad Karachi Lahore Peshawar


  • Degree in relevant subject of Science or Engineering, earned from a recognized university after 16 years of education AND
  • At least 60% marks or CGPA of at least 2.0(on a scale of 4.0).

Selection Criteria:

  • Past Academic Record (Bachelor): 50%
  • Performance in NU MS Admission Test: 50%

Typical course load in a semester is four courses. However, NUCES staff cannot register for more than two courses in a semester. In the second semester, a student has the option to pursue MS by undertaking either a 6 credit hour MS Thesis or Project, spread over two regular semesters.

Tentative Study Plan
Sr. No Course Name Crdt Hrs.
Semester 1
1 Applied Programming 1 NC
2 Data Science Tools & Techniques 3+0
3 Statistical & Mathematical 3+0
4 Methods for Data Science
5 Specialized Core-I 3+0
Sr. No Course Name Crdt Hrs.
Semester 2
1 Machine Learning for Data Science 3+0
2 Specialized Core-II 3+0
3 Research Methodology 3+0
Sr. No Course Name Crdt Hrs.
Semester 3
1 Computing Elective-I 3+0
2 MS Thesis-I/MS Project-I 0+3
Sr. No Course Name Crdt Hrs.
Semester 4
1 Computing Elective-II 3+0
2 MS Thesis-II/MS Project-II 0+3

Note 1: Applied Programming course is of No Credit (NC), but it must be passed.

Note 2: Registration in “MS Thesis - I” is allowed provided the student has:

  • Earned at least 15 credits
  • Passed the “Research Methodology” course
  • CGPA is equal to or more than 2.5
Specialized Core Courses
  • DS 5001  Advance Big Data Analytics
  • DS 5006  Deep Learning
  • DS 5007  Natural Language Processing
  • DS 5005  Distributed Data Processing